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We describe Richardson's functor from the Diophantine equations and Diophan- 
tine problems into elementary real-valued functions and problems. We then derive 
a general undecidability and incompleteness result for elementary functions 
within ZFC set theory, and apply it to some problems in Hamiltonian mechanics 
and dynamical systems theory. Our examples deal with the algorithmic imposs- 
ibility of deciding whether a given Hamiltonian can be integrated by quadratures 
and related questions; they lead to a version of G6del's incompleteness theorem 
within Hamiltonian mechanics. A similar application to the unsolvability of the 
decision problem for chaotic dynamical systems is also obtained. 

1. I N T R O D U C T I O N  

The first example of  a sensible mathematical statement which is undecid- 
able with respect to an accepted axiomatic system was given through the 
19th century proof  of  the independence of  Euclid's parallel postulate from 
the remaining axioms of  plane geometry. That independence proof  is cer- 
tainly one of  the greatest technical and conceptual achievements of  the last 
century's mathematics, since it emphasizes the formal nature of  an axiomatic 
system through the separation between syntaxis and semantics, and shows 
that a naively-looking, intuitively "true" geometrical assertion can be un- 
provable from "natural" first principles. 

However, we had to wait until 1931 for another major progress in that 
direction. As is well known, G6del (1931) showed in a famous paper that a 
still more basic axiom system, that of formalized arithmetic, also contains 
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undecidable statements, that is, sentences that can neither be proved nor 
disproved with the tools available within the formal system. However, since 
the example that G6del gave for an undecidable arithmetic statement was 
quite weird and without an obvious explicit mathematical meaning, it was 
hoped at that time that the undecidability phenomenon (and examples of 
undecidable sentences) would remain a subject far from everyday mathe- 
matical activity, despite the fact that the precedent of plane geometry clearly 
indicates that sensible mathematical statements can be undecidable within a 
standard axiomatic system [a recent rigorous, albeit elementary discussion 
and proof of G6del's result can be found in Uspensky (1987)]. 

Cohen's 1963 proof of the independence of the continuum hypothesis 
with respect to the Zermelo-Fraenkel set-theoretic axioms furnished a new 
important example of a sensible mathematical sentence that is undecidable 
within a powerful axiomatic system (Cohen, 1966); it has been frequently 
pointed out that Cohen's proof is in many respects similar to the 19th century 
proof of the independence of the parallel postulate. 

As it had long been known that the continuum hypothesis has immedi- 
ate relevance to several problems in point-set topology, measure theory, 
and analysis (~ierpifiski, 1956), from 1963 onward undecidable statements 
within the Zermelo-Fraenkel system plus the full axiom of choice have been 
creeping up in all branches of mathematics. For a review of the chief results 
see Dales and Woodin (1987) and Kunen and Vaught (1984). 

So much for independence results (and the corresponding undecidable 
sentences) in mathematics; undecidability is everywhere. And how about 
physics? We give in the present paper several examples of very simple and 
yet powerful undecidability and incompleteness results in classical mechanics 
and in dynamical systems theory. They all stem from Richardson's (1968) 
proof that the theory of elementary functions in classical analysis is undecid- 
able. Elementary functions are those that belong to an algebra ~ that con- 
tains the rational numbers, polynomials, sines and cosines, exponentials, plus 
the number ~r, and is closed under sum, product, and function composition. 
Richardson's main result translates Diophantine equations into elementary 
functions, and allows us to obtain all the undecidability and incompleteness 
consequences of Hilbert's Tenth Problem inside d when d is seen as 
embedded into a sufficiently powerful axiom system, such as ZFC (Davis et 
al., 1976). Therefore, innocent-looking problems in analysis are seen to be 
intractable because they are equivalent to the solution of an intractable 
Diophantine equation. 

Moreover, as the undecidability of Hilbert's Tenth Problem is a direct 
consequence of G6del's theorem, our results are not tied to a particular 
axiomatic system; they are essentially examples of undecidability and incom- 
pleteness results in classical analysis within a sufficiently rich axiom system 
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T (whose properties are detailed below) that can be extended to undecid- 
ability and incompleteness results in axiomatized formulations of physics 
within T or within one of its extensions. This means that as long as our 
mathematical (and axiomatic) tools allow us to formalize algorithmicity, 
which means recursive function theory, we will get the spector of undecid- 
ability and incompleteness in our theory. 

Section 2 reviews concepts like "undecidability" and "incompleteness" 
within formal systems. Section 3 describes the construction of Richardson's 
functor from Diophantine equations (and exponential Diophantine equa- 
tions) into the algebra of elementary functions of a real variable. We con- 
clude the section with a "general incompleteness theorem" that serves as a 
blueprint for the results we obtain in classical mechanics. 

Sections 4 and 5 apply those ideas to Hamiltonian dynamics and to 
chaotic dynamical systems. Our main undecidability and incompleteness 
results deal with the integrability of Hamilton-Jacobi equations, and with 
the possibility of proving that a given dynamical system has a chaotic 
behavior. 

Finally, in Section 6 we evaluate our results and try to make some sense 
out of such a seemingly confusing plethora of undecidability and incomplete- 
ness results for the mathematics of an empirical science like physics. 

The problems that we discuss here have been around for some time. 
See on the integrability problem Lichtenberg and Lieberman (1983) and 
Tabor (1989). On the decision problem for chaotic systems ("if we look at 
the system's equations, can we tell whether it is chaotic?") see Hirsch (1985). 
A previous discussion on the relation between G6del's incompleteness 
theorem and physics can be found in Chaitin (1982). A particular example 
of a dynamical system with undecidable properties has been given by Moore 
(1990). 

2. NOTATION AND BACKGROUND 

We suppose that our discussion takes place within an axiomatic frame- 
work flexible enough to include from arithmetic to calculus on manifolds 
and the geometry of symplectic structures. A detailed description of one 
such axiomatization within Zermelo-Fraenkel set theory can be found in 
da Costa and Doria (1990a); we also quote as related work our papers 
(da Costa and Doria, 1990b, 1991 ; da Costa et al., 1990). The concepts we 
require are described below. 

However, we note that since we will be mainly discussing algorithmic 
impossibilities, we are not tied to a particular axiom system; it is enough to 
know that the main objects we must handle in our proofs can be adequately 
formalized within some axiomatics. 
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Our notation is standard. We use a few logical symbols, such as V ("for 
all"), 3 ("there exists"), A ("and"),  V ("or"),  ~ ( " i f , . . .  then"), ~ ("if  
and only if").  T~- ~ means, "the sentence ~ can be deduced from the axioms 
of the theory T." M ~ ~ means, "4 is true for the model M."  The arrow ---, 
will also denote maps; meaning will be clear from the context. 

We denote the set of natural numbers by COo; the integers are Z, the 
rationals are O and the reals are R. 

Algorithms, Effectiveness, and Formal Systems 

An algorithm is a mechanical procedure that generates finite sequences 
of symbols out of finite sequences of symbols. Intuitively, an algorithm 
satisfies the following guidelines: 

1. We start from a finite sequence of symbols, the algorithm's input. 
2. If  and when the algorithm concludes its task, it produces another 

finite sequence of symbols, the algorithm's output. 
3. The actual procedure to be followed can be explicitly written out as 

a finite sequence of symbols. 
4. The computation proceeds in a step-by-step manner, and produces 

an output (if any) after a finite number of steps. 
5. Intermediate computations can also be coded as a finite sequence of 

symbols. 
6. The whole procedure is deterministic. 

The theory of algorithms, or the theory of effective computability, is formal- 
ized in several different but equivalent ways: recursive function theory, the 
theory of Turing machines, the theory of Post's canonical languages, Markov 
algorithms, and so on. Church's Thesis asserts that each one of those formali- 
zations adequately "translates" the intuitive concept of an algorithm. For 
detailed references see Machtey and Young (1978), Mendelson (1987), and 
Rogers (1967). 

Let co0 be the natural number sequence, and let A __q COo be one of its 
(possibly infinite) subsets. We say that A is recursive if there is an algorithm 
that allows us to answer, for every nstoo, the question "does n~A?" 

A is recursively enumerable if there is an algorithm which, given as its 
input the sequence of all natural numbers 0, 1, 2 . . . . .  generates as its output 
a complete list of all the elements of A. That listing is not necessarily ordered 
by <, and repetitions are allowed. 

Every recursive set is recursively enumerable, but there are recursively 
enumerable sets that are not recursive. 

One can easily define concepts like "formal system . . . .  formal theory," 
"axiomatizable theory," plus the semantic notions of "interpretation of [the 
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language of] a theory," " t ruth,"  and the concept of  "model"  for a set of 
sentences in a theory [see, for instance, Manin (1977) and Mendelson (1987) ; 
a particular example is described in da Costa et al. (1990)]. Anyway, they 
are the standard ones. 

We are going to deal here with a few specific formal systems. We denote 
/'1 Z)/-I by L l r  the first-order language of  arithmetic, and ~zvc "--At is the first- 

order language of  Zermelo-Fraenkel 's  axiomatic set theory with the axiom 
of  choice; the whole o f "  standard" or "classical" mathematics can be formal- 
ized within 1 L zrc ,  so that all usual mathematical theorems are theorems in 
L~FC. References can be found in da Costa et al. (1990), Manin (1977), and 
Mendelson (1987). 

In the general case, we will require of  any formal theory T that its 
language be a first-order language, and L ~ L ~,r, plus some extra conditions 
that are stated below. 

Given any such theory T, we suppose that there is an effective coding 
z: S~r ~r.o0 of  the set of  sentences of  T; z is 1-1 and onto, and as it is effective, 
given any k~oJo, we can algorithmically obtain the corresponding sentence 

We denote by ~--rD 6er the set of all theorems of  T; for all theories that 
are discussed in the present paper, 5-T is a recursively enumerable set. 

We then state: 

Definition 2.1. For  any such theory T, we have: 
1. If  ~--r~6fr is a recursive subset, then 5- is a decidable theory. 
2. If  ~-- r~6er  is not recursive, then T is an undecidable theory. 
3. If, for all sentences ~e6er ,  either ~ r  or ( ~ ) ~ J r ,  we say that 

T is a complete theory. 
4. If  there is a ~0~6~r such that ~06~--r as well as (--7 ~0)~'-T, then T 

is an incomplete theory, and 40 is said to be an undecidable sentence 
of  T. 

Remark 2.2. We will frequently write T ~  ~ for ~ 9 - - r .  

The next definition is discussed in Rogers (1967, pp. 319-321). Let 
6eAr~6er be the set of  arithmetic sentences in T: 

Definition 2.3. I f L  1 1 T~LAr, then: 
1. For  (, ~ 6 ~ r ,  ~" and ~ are T-demonstrably equivalent if and only if 

2. If  (~6eAr, ~ 6 a T ,  and ( and ~ are T-demonstrably equivalent, then 
we say that r is arithmetically expressible within T. 

We will write N for the standard model where the axioms of arithmetic 
are satisfied. I f  WF is the von Neumann well-founded set-theoretic universe 
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(Manin, 1977), then N c W F ;  the same is true of the other standard set- 
theoretic models, including Cohen's (1966) minimal constructive model. 

However, we need a stronger condition on the semantics of T: 

L r ~  L At, then we say that T is arithmetically consist- Definition 2.4. If 1 1 
ent if and only if N is a model for all sentences in ~ar  that are provable 
in T. 

Remark 2.5. From here on we suppose that all theories we are handling 
are consistent in the particular sense made explicit above: for any theory T 
such that 1 L r ~ L h r ,  every arithmetic theorem of T is true in the standard 
model N. That condition means that one of the models for arithmetic in T 
is the standard model N. That is the content of our definition of an arithmet- 
ically consistent theory. 

3. R I C H A R D S O N ' S  T H E O R E M  

Several authors have dealt in recent times with the concept of comput- 
ability (and with noncomputable objects and undecidable questions) in the 
realm of classical analysis. We can quote the Pour-E1 characterization for 
computability in function spaces and its application to mathematical physics 
(Pour-E1 and Caldwell, 1975; Pour-E1 and Richards, 1981, 1983a,b, 1989). 
More recently, Blum et al. (1989) have started a theory of computability 
over the reals, and have obtained nonrecursive recursively enumerable 
objects with respect to their point of view in the theory of dynamical systems. 

However, we are going to use here a much older series of results, stem- 
ming from Richardson's (1968) paper on the undecidability of real analysis 
out of undecidable problems that arise in the theory of exponential Diophan- 
tine and plain Diophantine equations. Richardson's main lemma can be seen 
as the construction of a functor from the (small, i.e., set-theoretic) category 
of Diophantine equations into the algebra of elementary real-valued 
functions defined over R', n finite, and from that algebra into the algebra 
of elementary functions of a single real variable. Since the theory of 
Diophantine equations and of the associated Diophantine sets perfectly mir- 
rors recursion theory on the natural numbers COo (Davis et al., 1976), we can 
reproduce with no great effort several standard results in recursion theory 
within both algebras of elementary functions, and that includes its undecid- 
ability features. 

We note that undecidability results and a more systematic investigation 
of the incompleteness phenomenon in classical analysis with techniques that 
stem directly out of G6del's original incompleteness theorem of 1931 are 
subjects very infrequently dealt with in the recent literature, as we can verify 
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from an examination of the 1985 to beginning 1990 issues of the Mathemati- 
cal Reviews. Results along the lines of those by Richardson have been inde- 
pendently obtained by Adler (1969) and Scarpellini (1963). Papers that 
stemmed from Richardson's are Caviness (1970), Richardson (1969), and 
Wang (1974); we have used portions of the Caviness-Wang reformulation 
of Richardson's results. However, we note that a more recent review of 
nonalgorithmicity (Davenport, 1981) quotes only Richardson's paper. 

3.1. The Main Ideas 

Real analysis deals with objects that are in general sets with the cardinal- 
ity of the continuum. Therefore, in order to manipulate at least some of 
those sets, we represent them through expressions in the language L 1 of the 
theory T. Given an algebra of functions 9 ,  we try to obtain a set of 
expressions E(~)  in L ~ for the functions in 9 ,  so that given a n y f e ~ ,  there 
is at least one E ( f ) e E ( ~ )  that represents the function f. The idea is that 
E(~)  should be decidable in L ~ [that is, given a string ~ L  ~-, we must be 
able to check whether ~ is in E(@) or not]. 

For example, given the alphabet {x, +, - ,  1, (,), ',} we are able to repre- 
sent through finite strings of symbols over that alphabet all polynomials of 
a real variable with rational coefficients. Convenient abbreviations allow us 
to handle rational polynomials with the usual notation. 

We are going to consider an algebra of (at least sectionally smooth) 
real-defined and real-valued functions built out of elementary functions, that 
is to say, an algebra whose main "bricks" are polynomials, sines, cosines, 
base-e exponentials, plus rational coefficients and the number zr; we will 
extend that algebra to include the absolute value function Ixl, the sign func- 
tion r/(x), rational functions, some derivatives, and numbers defined by 
(proper or improper) definite integrals with limits expressible with finite 
strings of symbols. The corresponding set of expressions E will, however, 
abide to the recursiveness property stated above, and expressions in E will 
look like the usual objects that one handles in an elementary course in 
analysis, even if they will sometimes be very large and complicated 
expressions. 

Now, do we have a 1-1 correspondence between ~ and E(~)? No: 
both f (x )= 0 and g(x)= x cos(to/2) are expressions for the everywhere null 
function. Also, we will see below that we cannot in general algorithmically 
check whether two different expressions in E(~)  represent the same function 
in 9.  

Given an expression in one of our E(~),  we can compute for an arbi- 
trary computable set of values of the variables in the expression the value 
of the function represented by that expression, as every "brick" in E(~)  is 
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a computable function in all standard concepts for the computability of real 
functions (Pour-E1 and Caldwell, 1975; Pour-E1 and Richards, 1981, 
1983a,b, 1989). Since we will only have real-defined and real-valued functions 
with a nice set of discontinuities, such functions will be defined when we 
know their values at the rationals. Therefore, it is easily seen that undecidable 
questions will appear as soon as we start the development of their theory. 
For example: given an arbitrary expression for a function in one of the 
that appear in the present work, we cannot in general algorithmically decide 
whether that expression represents the zero function. Compute it: fix an 
enumeration for O and start checking value after value. If the expression is 
nonzero somewhere, the computation will eventually find that nonzero value, 
and stop. If  it is always zero, the computation will never stop (J. Stolfi, 
personal communication). Richardson's functor allows us to obtain such 
undecidability results (and related incompleteness results) out of the more 
familiar undecidability and incompleteness results in formalized arithmetic. 

Also, such algebras ~ are the main staple of theoretical physics. There- 
fore, once we have obtained undecidability and incompleteness results for 
them, we can reinterprete those results within physics. 

3.2. Polynomials and Subelementary Functions 

Let P [ x l ,  x2 . . . . .  yl ,  y2 . . . . .  Z] be the 
(infinite denumerable) set of unknowns 

ring of polynomials in the 

{ X l ,  X 2 ,  X 3 ,  �9 �9 �9 , y l , Y 2 , Y 3 ,  �9 �9 . }  

with coefficients in the set Z of integers, P is closed under addition, multipli- 
cation, and function composition. P is also a denumerable set. 

Let p ( x l ,  x 2 , . . . ,  Xm, Y l ,  Y2, �9 �9 �9 Y n ) e P  be a polynomial in the m + n  

unknowns x~ . . . . .  xm, y~ . . . . .  y , ,  with m > 0. Then we define: 

Defini t ion 3.1. The set D, 

( X 1 . . . . .  Xm) E D *-~ 3yl . . . . .  y .  ~ COo p (  x l  . . . . .  xm , Yl . . . . .  y . )  = 0 

where the xieog0, is a Diophant ine  set. 

For completeness we add the corresponding results for exponential 
Diophantine equations: let us add to the elements of P exponential 
expressions as in Davis et al. (1961, 1976); we get the ring E[x~ . . . . .  Z] of 
exponential polynomials over Z. It is again a denumerable set. 
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Let e(x l  . . . . .  xm, yl . . . . .  y,) ~E. We define: 

Definit ion 3.2. The set D, 

( x l  . . . . .  x , , , )~D*--~ 3yl , . . .~o9o e ( x l ,  . . . , Xm, Yl . . . . .  Yn) =0 

where the xt~co0, is an exponent ia l  Diophant ine  set. 

We have the two well-known results: 

Proposi t ion 3.3. 1. D is exponential Diophantine if and only if D is a 
recursively enumerable relation on co~'. 

2. D is Diophantine if and only if D is a recursively enumerable relation 
on cog'. 

P r o o f  For part 1, see Davis et  al. (1961) and Jones and Matija~evi~ 
(1984); for part 2, see Davis (1973). �9 

Corollary 3.4. Recursively enumerable relations on the positive integers 
are definable in the first-order language L i t  of arithmetic. 

P r o o f  See Manin (1977). �9 

3.3. Richardson's Functor 

Richardson's argument is developed (Richardson, 1968) within infor- 
mal mathematics, but it can be adequately and rigorously formalized within 
ZFC, which we suppose to be consistent in the sense that all arithmetical 
theorems of ZFC are true in the standard model N for arithmetic; that is, 
our theories are, as we have already pointed out, arithmetically consistent. 
Richardson's main result is, for every arithmetic set of sentences (Davis, 
1973; Davis et al., 1976; Rogers, 1967) {r parametrized by a natural 
number rn~ COo, there is a set-theoretic set of sentences {~m}, again parame- 
trized by the natural numbers, so that for every m, ZFC ~- r Ore. As an 
arithmetic predicate, (0m is an assertion about natural numbers, while (I),, is 
a sentence involving elementary functions and real numbers. 

Therefore {O,~) is a set of arithmetically expressible sentences within 
ZFC. 

We will refer to this system of equivalences as "Richardson's functor," 
as it provides a way of translating statements about natural numbers into 
statements about real numbers, that is, we get an equivalence between sent- 
ences which are formalized in arithmetic, and sentences which are formalized 
in the theory of elementary functions of a real variable, a theory that includes 
arithmetic as one of its subtheories. 

Richardson's results then arise from the fact that, for some sets of such 
sentences, K = {m: ZFCb-q~(rh)} ,  where rh is the name of m within ZFC, 
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is not a recursive set, which is equivalent to the nonrecursiveness of  K = 
{m:ZFCl- -ep(rh)} .  Moreover, since we are dealing with arithmetically 
expressible sentences, the same nonrecursiveness o f  K implies that there is a 
/Co e ~ -  K such that N ~ --7 q~(ko), but neither ~0~ko) nor its negation can be 
proved within arithmetic. Therefore, M ~--n q)(k0), but neither q~(k0) nor  its 
negation can be proved within ZFC. 

We will actually restrict our attention at the beginning to an algebra 
of  subelementary functions; we will also handle the corresponding set of  
expressions that represent those functions in a convenient L ~. We define the 
algebra ~r . . . .  , O] of  subelementary functions in the unknowns { x l , . . .  } 
over the rational numbers O. It is thus constructed: 

1. rc and q e ~r where q ~ O. 
2. xi, sin x,., and eX'es~. 
3. I f A  and B e d ,  A + B  and A �9 B e d .  
4. I f  A and B e d ,  A oBese  (o denotes function composition). 
5. d is the smallest algebra closed under the preceding conditions. 

Lemma 3.5. d is closed under partial derivation 3;= O,x,. 

Proo f  Immediate. 1 

Remark  3.6. d is a denumerable ring, since it has been defined over O, 
but it is convenient to look at it as embedded into its real extension d [ R ] .  
However, we will not change our notation; whenever we need to go back to 
a denumerable ring, that fact will be explicitly noted. 

From here on, if ~ is a set of  functions, E ( ~ )  is the set of those 
expressions in L 1 that represent the functions in ~ .  When we say that we 
can construct a function, we mean that we can construct the corresponding 
expression in E(~) .  Also, functions in any set ~ are handled through the 
expressions in E(~) ,  so that, e.g., decision problems for ~ are in fact decision 
problems for E(@). 

L e m m a  3.7. If  f e d ,  then there is g e d  so that: 

1. Vxl �9 �9 - x,  eFI g ( x l , . . . ,  x , ) >  1 

2. Vx~-- �9 x ,  eR, A~ . . . . .  A, eR, (IA~I_<I A . . .  A IAnl_<l) 

-* (g(x l  . . . . .  x , )  > I f (x l  + A1 . . . . .  x ,  + A,)I) 

Proo f  Proof  is by induction. First step: we deal with constants or 
variables. 

(i) If  

f ( x ,  . . . .  , x , )  = c 
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c a constant, then 

(ii) If  

then 

g (x l , .  . . , x , )=[C[+ 2 

f ( x l ,  . . . , x , ) = x i  

g(x ,  . . . . .  x . )  =x~+2 
Clearly, (1) is satisfied, as always g > 1. For  (2), we have 

x~+2>lx i+Ai [  

[Aim < 1. For  x2> x, x > 1, and the constant 2 takes care of  the situation 
for 0<x_< 1. 

Induction step: suppose that A(xl  . . . .  , x , )  and B ( x l , . . .  , x , )  are 
obtained in k or less steps. Suppose also that we have constructed g and h 
such that 

g(x~ . . . . .  x,)  > IA(x~ + A , , . . . ,  x~ + A,)[ 

g(xl . . . .  , x,)  > 1 

Similar conditions [h(x) > 1 and h(x) > [B(x + A)J, where we abbreviate x = 
( x l , . . . ,  x , ) ]  are valid of h. Then: 

�9 I f f = A + B ,  we put k = g + h .  
�9 I f  f =  AB, we put k = gh. 
�9 If  f =  e A, we put k = e g. 
�9 If  f =  sin A, we put k = 2. 

We thus conclude the proof. �9 

We can now state the first of  Richardson's main results: given that 
1 1 

LArCLZFc: 

Proposition 3.8 (Richardson's Functor, I). There is an injection 
l~: P ~ d ,  where P denotes the algebra of Z-valued polynomials in a finite 
number of variables, and d is the algebra of  subelementary functions 
described above, such that: 

1. zp is constructive, that is, given the expression for p in L~r, there is 
an effective procedure so that we can obtain the corresponding 
expression for F =  t?(p) in L l v c .  

2. tpis 1-1. 
3. 3x~co~ p(m, x ) = 0  if and only if 3x~R n F(m, x ) = 0  if and only if 

3x~R" F(m, x)<_ 1, for p ~ P  and F e d .  
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4. The injection le is proper. 

P r o o f  For the first statement, proof follows from the following lemma 
and constructive definitions for re(p): 

L e m m a  3.9. There is a constructive procedure such that given the 
expression for p E P ,  we can obtain the expressions for functions k~-ed that 
satisfy the following conditions: if IAil -< 1, real numbers, then 

ki(m, Xl  . . . . .  Xn) > IOi(p2(m, xl + A 1 , . . . ,  xn + An))[ 

P r o o f  Apply the construction in Lemma 3.7 to p. We notice that the 
computation of the expressions for any such ~iA is clearly algorithmic for 
subelementary functions explicitly given. �9 

Definition 3.10. Given p e P ,  for ke as in Lemma 3.9, we define 

f ( m ,  x l ,  . . . , Xn) = (n + 1) 4 = (n  + 1)4{p2(m,  x l  . . . .  , x n )  

+ ~ (sin 2 4 ~rxi ) k i  (m, x l  . . . . .  xn)} 
i=1 

Finally, we write: 

Definition 3.11. F(m,  Xl . . . . .  xn) = f ( m ,  x~ . . . . .  x]) .  
We settle the first question. 
For the second assertion, it is immediate thatpl r implies that F1 r F2. 
For the fourth assertion, we notice (Lemma 3.9) that it suffices to obtain 

a subelementary function as in Definition 3.10, but such that k <  hO,pl. The 
resulting function is subelementary if k is a subelementary function, but it 
cannot belong to the image of ze. 

Finally, the third assertion is the main content of Richardson's result, 
and is proved in (Richardson, 1968) in a straightforward way. 

Remark  3.12. We define 

h(x)  = x sin x 

g( x ) = x sin x 3 

given F(m,  Xl . . . . .  x , ) ,  we make the following substitutions: 

x~ = h ( x )  

x2 = h og(x)  

x3 = hog o g ( x )  

X n -  1 = h o g  . . . . .  g ( x )  
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(where g is composed n -  2 times), and 

x .  = g  og  . . . .  o g ( x )  

where here g is composed n times. 
We thus get G(m, x), defined over R and with values in R, where as 

usual m E r 

Corollary 3.13 (Richardson's Functor, II). Let d~ be the algebra of 
subelementary functions over a single real variable x. Then there is a map 
t': P--+d~ such that: 

1. t' is constructive. 
2. l' is 1-1. 
3. The inclusion t ' ( P ) = d l  is proper. 
4. 3x~co~ p(m, x)=0  if and only if 3x~R G(m, x)=0  if and only if 

3x~ R G(m, x) < 1. 

Proof G(m, x) is given in Remark 3.12. Given F, the corresponding 
expression for G is obviously constructive. We therefore prove the first 
assertion. 

The second assertion is again a consequence of the fact that given two 
different polynomials over O, p~ ~P2 entails that G~ ~ G2. The third assertion 
is also proved as in the preceding theorem. Finally, for the last assertion, 
see the proof in Richardson 0968). �9 

The next two results take place in the algebra ~'~, which is ~1 with the 
new function x/x and closed under this new operation and the previous ones. 

Definition 3.14. We write: 

1. 

2. x - y  = (1/2)(Ix-yl + ( x -y ) )  

3. min(x, y) = x -  (x*  y) 

Corollary 3.15. If 

B(m, x)--IG(m, x) - I I -  (G(m, x ) -  1) 

then Vx~ R B(m, x) = 0 if and only if 7 3x~ R G(m, x) < 1. 

Proof Immediate, from the definition of B. �9 

Corollary 3.16. If 

z(m, x)= min(1, 2 * 2G(m, x)) 
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then: 

1. 7 3 x e R  G(m, x ) <  1 if and only if VxeR z(m, x )=0 .  
2. 3xeR G(m, x) < 1 if and only if there is an interval Im~ R such that 

we have VxeI,, z(m, x)= 1. 

Proof. See Richardson (1968). �9 

We wish to emphasize that each Im depends on the particular value 
f o r  m ,  

Caviness (1970) and Wang (1974) have improvements on the preceding 
results. 

Remark 3.17. From now on we suppose that we have extended d{  to 
an algebra ~ that includes rational functions f /g,  g, gs d{ ,  plus real numbers 

b 
defined by (proper or improper) definite integrals of the form Saf(x)dx, 
where again f e d { .  We also add to ~ the step function rl(X), 

~(x) = x/Ixl, x ~ O  

rl(x) = 0, x = 0 

If  we understand that derivations in ~ include derivations of continuous 
functions in the sense of distribution theory (Jantscher, 1971, pp. 86 and 
319; and Yosida, 1980), we will obtain in E(~) and expression for q involv- 
ing only the derivative and the absolute value function 1. �9 �9 [: 

d 
rl(x) = ~ Ixl 

We take ~ to be closed under (finite) algebraic operations and function 
composition. 

We state: 

Corollary 3.18. There is a function O(m, x)e.~ so that: 

1. ---n3xsR G(m,x)<l  if and only if Vx~R O(m,x)=O. 
2. 3xsR G(m, x ) <  1 if and only if VxeR O(m, x ) =  1. 

Proof We can actually construct an expression for O(m, x) in ~. Put 
C(m, x)=(B(m, x)) 2, for B as in Corollary 3.15. Then, for every real x, 
C(m, x) >_ O. The succession of definite integrals 

f + ~ C(m, x) e-x2 
K(m)= _~ l + C(m, x) dx 
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is convergent, for all values of m. We can thus write 

O(m, x)=O(m)= #(1 n 

Remark 3.19. If what we really want to obtain out of Richardson's 
results is a simple, convenient, two-state, smooth, real function that dis- 
tinguishes between the two possibilities embodied in G(m, x) in Corollary 
3.13, we can proceed according to the following suggestion by J. Stolfi 
(personal communication): G(m, x) behaves as follows----either we have 
VxeR G(m,x)>l or 3xeR G(m,x)<l. 

We can therefore directly define 0(m): 0(m)=0 if and only if 
G(m, x) > 1, always, and 0(m) = 1 if and only if G(m, x) < (1/2) somewhere. 

However, even if that construction is quite natural, we would like to 
obtain 0(m) as an expression involving elementary functions plus "nice" 
operations such as the absolute value or the derivative, as we did above. 

Moreover, O(m) does not have a unique expression in the algebra .~, as 
the unsolvability of the identity problem (see Corollary 3.15 above and 
Corollary 3.22 below) for elementary functions with an absolute value func- 
tion added allows for the possibility that many other expressions within .~ 
might represent O(m), without that fact being algorithmically verifiable, 
since we cannot algorithmically decide in the general case whether 
O(m, x) =f(m, x), for an arbitrary f(m, x) within .~. 

It is also worth emphasizing that 0(m, x) is a smooth family of 
functions, even if defined out of the step function q. 

Another possibility for a two-state function like 0 is given in da Costa 
and Doria (1990b). Of course, the main motivation for the construction of 
one such 0(m) is that, if we start from a universal polynomial p(m, x) (Jones, 
1982), the corresponding O(m) will represent, with the help of elementary 
functions and operations in real analysis, a function that "solves" the Halting 
Problem for Turing machines (Jones, 1982; Rogers, 1967; Scarpellini, 1963). 
There are assuredly simpler constructions than the one we have given above; 
the algorithmic undecidability of the identity problem for elementary 
functions (see Corollary 3.22) also ensures that there is an infinity of such 
0(m) in .~, which we may never algorithmically recognize as "representa- 
tions" for the Halting Problem. 

3.4. Undecidability and Incompleteness 

We note that all the preceding maps and equivalences can be adequately 
formalized as ZFC theorems. 
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Our main undecidability results stem from the following: 

L e m m a  3.20. 1. There is a Diophantine set D so that 

m~D<--~ 3xl . . . . .  xn~cOo p(m,  xl , � 9  x n ) = 0  

p ~P, and D is recursively enumerable but not recursive. 
2. There is an exponential Diophantine set D so that 

m~D<---)3xl . . . . .  x,6cOo e(m, xl . . . . .  x , ) = 0  

e e E ,  and D is recursively enumerable but not recursive. 

Proo f  For  part 1, see Davis (1973) and Martin (1977). For  part 2 see 
Davis et al. (1961) and Jones and Matija~evi~ (1984). 

Corollary 3.21. For an arbitrary rn~o)0 there is no general decision 
procedure to check whether p(m, Xl . . . .  ) = 0 or e(rn, x~ . . . .  ) = 0 have a solu- 
tion in the positive integers. 

We will not explore the results associated to exponential Diophantine 
equations, since we can restrict our attention to the Diophantine situation. 
However, from time to time we will mention the possible extension to the 
exponential Diophantine case. 

We will now handle functions in the algebra .~ that are Richardson 
transforms of  a p that satisfies Corollary 3.21. We will consider such a 
polynomialp that a given arithmetical sentence ~t(p) is undecidable in forma- 
lized arithmetic, and will get through Richardson's functor several sentences 
~P(t'(p)) that are demonstrably equivalent to ~ p )  in ZFC;  the equivalence 
implies that they are also undecidable in ZFC, which we suppose to be 
arithmetically consistent. See Proposition 3.28. Similar constructions can 
also be made for the corresponding exponential Diophantine expression e. 

That  means, for p as above, 

1. For  m ~ co0, there is no general algorithm to decide whether there are 
natural numbers xl . . . .  so that p(m,  xl . . . .  ) = O. 

2. p:  0)~+l~z.  

Therefore, given such a p, and F =  re(p), and the other related functions 
(G, B, and so on), we have: 

Corollary 3.22. For  an arbitrary m E COo there is no general procedure to 
check whether: 

1. There are real numbers Xl . . . . .  x, such that F(m, x~ . . . . .  Xn) = O. 
2. There is a real number x so that G(m, x)  < 1. 
3. Whether we have Vx~lq B(m, x)  =0, for B as in Corollary 3.15. 
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4. Whether we have VxeR z(m, x ) = 0  or VxeI z ( m , x ) = l  over an 
interval I,,, as in Corollary 3.16. 

5. Whether we have u  R 0(m, x ) =  0 or Vxe R O(m, x ) =  1 over the 
reals, as in Corollary 3.18. 

6. Whether for an arbitrary f (m,  x) we have f (m,  x) ==- O(m, x). 

Proof From the preceding results. The last undecidability statement 
follows from the third one. �9 

Remark 3.23. We can go further: for example, as the embedding 
lp(P) c d~ is proper, is there a general decision procedure to check whether 
a g i v e n f e d ~  is the image of  some peP?. The answer is, no. Let B(m, x) be 
as in Corollary 3.15, and let Co, r e d {  - tp(P). Then, for 

f (m,  x) = Co + B(m, x)r(m, x) 

there is no such a decision procedure. 
The present example is a kind of blueprint for a family of  undecidability 

results in d~  and its extensions. See Proposition 3.27 below. 

Therefore, lists of  functions such as G(m, x), B(m, x), and the like have 
several undecidability properties, that is to say, we cannot construct a general 
algorithm that, for each m, allows us to decide propeties like those described 
above. 

However, there is more in stock here: we now quote a result that comes 
straight down from a famous paper by Post (1944). Post gave in that paper 
an intuitive proof  of a G6del-like incompleteness theorem in arithmetic, 
and that proof  was imitated in the proof  of an incompleteness theorem for 
exponential Diophantine equations in Davis et al. (1961) and later in a 
similar result for plain Diophantine equations (Davis, 1973; Davis et aL, 
1973). 

Let T be an arithmetically consistent first-order theory whose language 
Lr~L~r .  Suppose that the set of  axioms of  T is recursively enumerable. 
Suppose also that one can prove form T every statement of  the form m + n = 
p, m �9 n=p and re<n, where m, neCOo, which is true in the standard model 
N. Then: 

Proposition 3.24. We can construct in T a Diophantine equation 

p ( x l  . . . . .  x . )  = 0 
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so that p = 0 has no solutions in the natural numbers in N, but such that 

T ~  -7  (~x e cog p(x) = O) 

Proof See Davis (1973) and Davis et al. (1976). Notice that we cannot 
also prove 

Tt-  (]x~cog p(x) =0) 

since in that case N would not be a model for arithmetic within T, as T is 
supposed to be arithmetically consistent. Therefore, the sentence 

3x ~ cog p(x) = 0 

is undecidable in T, for this particular p. �9 

Corollary 3.25. If  ZFC is arithmetically consistent, then neither 
ZFC~3xecog  p ( x ) = 0  nor ZFCY--7(3xecogp(x)=O). Moreover, for a 
model M of ZFC such that N c M is a model for arithmetic in ZFC, then 
M~-a(3xecog p(x)=O. �9 

We now get the Richardson ZFC-demonstrable equivalence: 

Lemma 3.26. 

ZFC F- -7 (3x e cog p(x) = O) ~ - 7 3 x  e R ~ F(x) < 1 

Proof Above. �9 

Corollary 3.27. If  ZFC is arithmetically consistent, then neither 
ZFC [7" ~, nor ZFC b" 7 ~, but M r ~, for ~ as follows: 

1. 7(3x~R") F(x)<l .  
2. -7(3xeR") F(x)=0 .  
3. Vxe R B(x) = O. 
4. For 0 as in Corollary 3.18, Vx~R O(x)=0. 
5. There is an f (m,  x) whose expression does not coincide with the 

expression for O(m,x) in Corollary 3.18, but such that VxeR 
f (m,  x) = O(m, x). 

Proof From the preceding propositions. For the last statement we write 
f (m,  x) = B(x) + O(m, x), for B(x) as above in 3. �9 

There is a general undecidability and incompleteness result at work here 
(P. Suppes, private comment). Everything proceeds within ZFC (or within 
any similarly powerful axiomatic system T), so that we can obtain all the 
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maps given by Richardson's functor into d and extensions. Let also ~ _ 2  
be any superalgebra; let ~ L ~ v c  be a predicate defined for ~ such that 

ZFC ~ 3 f ~  3 g ~  vt ( f )  A --7 g~(g) 

If  ~ L ~ v c  is any expression in that language, we write IJ ill for its complexity, 
as measured by the number of letters from ZFC's alphabet in ~. Also we 
define the complexity of a proof Czvc(~) of ~ in L~vc to be the minimum 
length that a deduction of ~ from the ZFC axioms can have, as measured 
by the total number of letters in the expressions that belong to the proof. 

Then: 

Proposition 3.28. If  ZFC is arithmetically consistent, then: 

1. There is an h e ~  so that neither ZFC ~-7  ~t(h) nor Z F C ~  ~t(h), but 
M ~ ~h), where M is as in Corollary 3.25. 

2. There is a denumerable set of functions hm(x)~ ,  m~coo, such that 
there is no general decision procedure to ascertain, for an arbitrary 
m, whether ~(hm) o r  7 IF(hm) is provable in ZFC. 

3. Given the set K =  {m: ZFCF-~(rh)}, and given an arbitrary total 
recursive function g: c00~coo, there is an infinite number of values 
for m so that CzFc(~'(rh)) >g(]F ~t(rh)[] ). 

Proof Let 0 be as in Corollary 3.18. Let j~, go satisfy our conditions 
on ~, that is, Z F C t -  ~,(J~) and ZFCt--7~g(g0). Then define 

h(m, x) = O(m, x)fo + [1 - O(m, x)]g0 

This settles part 2. Now let us specify 0 as in Corollary 3,27, so that the 
corresponding Diophantine equation p = 0 is never solvable, while that fact 
cannot be proved in ZFC. We then form, for such an indicator function, 

h =  0J~+ (1-O)go 

This settles part 1. 
Finally, for part 3, we notice that as K is recursively enumerable but 

not recursive, it satisfies the conditions in the G6del-Ehrenfeucht-Mycielski 
theorem (Ehrenfeucht and Mycielski, 1971; Manin, 1977). [] 

Remark 3.29. Notice that if we restrict M to its smooth subalgebra ~)s, 
which includes the halting function 0(m, x), ~ s  can be included in anyone 
of the algebras or function spaces that commonly appear in theoretical 
physics. Examples are the Fr6chet spaces Ck(U, R), where 0_<k_<+~, of 
functions defined on an open domain U_  R n, or its extensions; the Clifford 
modules ~s |  where C(Q) is the Clifford algebra over the quadratic 
form Q; the C*-algebras ~ |  where ~ is a commutative C*-algebra 
that includes our extended algebra of adequately smooth subelementary 
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functions, and C is an arbitrary C*-algebra, and so on. Smooth section 
spaces [spaces of classical physical fields (da Costa and Doria, 1990a)] also 
easily fit into the picture, as well as several spaces of Lebesgue-integrable 
functions. 

The third result in Proposition 3.28 means that even if we can hope to 
prove that some objects do have the property ~,, the proofs for that fact 
can be inordinately long, that is to say, they will be "very hard" within the 
usual ZFC axioms. The other portion of G6del's 1936 theorem, in the 
Ehrenfeucht-Mycielski formulation, however, suggests that if we add to 
ZFC the "right" axioms, the proofs for some intractable properties might be 
considerably shortened. The situation might be compared to what happens in 
analytical number theory or in algebraic geometry, when a very strong and 
elaborate mathematical machinery is called into action to solve problems in 
number theory. 

But that step might also take us in some cases beyond the pale of 
standard mathematics, which is here represented by ZFC, into an assuredly 
controversial area. 

4. UNDECIDABILITY IN CLASSICAL MECHANICS 

We formalize classical mechanics with the tools described in da Costa 
and Doria (1990a). Everything therefore is supposed to be conveniently 
obtained as a Suppes predicate within ZFC. From now on when we say that 
ZFC is arithmetically consistent, we mean that ZFC has a model M whose 
arithmetical submodel N is standard. 

4.1. Motions  

Our first proposition gives an idea of the kind of result we can get out 
of Richardson's functor. It is interesting in itself, since it defies intuition, 
and also due to the fact that it leads to a direct albeit informal proof of one 
of our G6del-like incompleteness results (see Proposition 5.3) whose main 
line of argument goes back to Post (1944). 

A motion in R n is a smooth map m: R~Rn; in local coordinates it is 
given by the n-uple of smooth functions re(t) -- ( m l ( t ) , . . . ,  ran(t)). 

Proposition 4.1. If ZFC is arithmetically consistent, then: 

1. There is no general algorithmic procedure to determine, for any fixed 
open square Sqc  R 2, whether an arbitrary motion 

re(t) = (ml(t), m2(t)) 

will go through Sq. 
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2. There is a motion m on the plane R 2 such that M ~ m(t) ~ Sq = ~ ,  
but ZFC ~ re(t) n Sq = ~Z;. 

Remark 4.2. We cannot prove within our axiomatization that the 
motion does not go through the square, no matter how small it is. We 
emphasize that m can be taken to be a smooth function, since we are here 
strictly working within the algebra d l  of  subelementary functions of  a single 
real variable. 

Proof For  the first assertion: from Corollary 3.22, we define 

A(k, x) = G(k, x) - 1 

Therefore, there is no general decision procedure to check whether one has, 
given an arbitrary keo)o, A(k, x) < 0. Now make a coordinate change so that 
the upper boundary of the square coincides with the x~ axis. Then put 
m~(k, t )=A(k ,  t). We are done. 

For  the second assertion: let p be as in Proposition 3.24. Therefore, 
"p = 0 has no solutions in COo" is undecidable in ZFC. As that assertion is 
equivalent to "u  R A(x)> 0" in ZFC, this new sentence is again undecid- 
able in ZFC, where A is built out o f p  according to a recipe similar to those 
in the preceding section. As a result, given the motion m so that m~(t)= 
A(t), the sentence "re(t) c~ Sq = ~ "  is undecidable in ZFC, even if there is 
a model M for ZFC where M ~ m(t) ~ Sq = ~ .  [] 

4.2. Hamiitonian Mechanics: The Integration Problem 

We take our motto from a quite well-known problem in classical mech- 
anics. It is easy to write down a Lagrangian or a Hamiltonian for a given 
physical system, and to obtain the corresponding differential equations for 
the motion. We also know that if we are lucky enough to find or guess an 
adequate canonical transformation, we trivialize the system by mapping it 
onto a constant flow in phase space. The canonical transformation we need 
is the solution of  the Hamilton-Jacobi equation. Is there a general algo- 
rithmic recipe to solve it? Numerical integration might be one such recipe, 
but it does not work, since we are in general dealing with quite complicated 
nonlinear systems that are highly unstable with respect to small changes in 
the initial conditions; they will very frequently have a "chaotic" behavior, 
and we may not be sure of  the extent truncation errors will affect our results. 

We therefore look for an algorithmic recipe that would work as follows: 
we are given an arbitrary Hamilton-Jacobi equation. Can we algorithmically 
check whether it is integrable by quadratures? Local integrals always exist, 
due to the Tubular Neighborhood theorem. But can we compute them? 
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This problem has been around since the 19th century: it was recently 
discussed and evaluated in two textbooks that deal with chaos and inte- 
grability in dynamical systems. We first quote Tabor (1989, p. 322): 

A recurrent theme in the preceding chapters has been the distinction between 
integrable and nonintegrable systems. The latter can exhibit chaotic behavior, 
whereas the former are distinguished by the existence of a full complement of 
integrals and exhibit stable, multiply-periodic behavior . . . .  Despite all the 
advances in nonlinear dynamics, a fundamental question still remains, namely: 
given a system o f  equations, how can one tell a priori whether or not they are 
integrable? 

Tabor then discusses a few particular cases where there are methods for the 
determination of first integrals in Hamiltonian systems. 

A similar discussion is also found in the following paragraph from 
Lichtenberg and Lieberman (1983, p. 38): 

Are there any general methods to test for the integrability of a given Hamiltonian? 
The answer, for  the moment is no. We can turn the question around, however, 
and ask i f  methods can be found to construct potentials that give rise to integrable 
Hamiltonians. The answer here is that a method exists, at least for a restricted 
class of problems, but the method becomes rapidly very tedious as the forms 
allowed for the integrals of the motion are expanded. 

(Emphasis added to both quotations). Both Tabor, and Lichtenberg and 
Lieberman, assert here two things: first, the problem of finding a general 
integrability criterion for arbitrary Hamiltonian systems looks very difficult. 
We show below that it is, in fact, algorithmically unsolvable; there is no 
general algorithmic procedure to separate the quadrature-integrable Hamil- 
tonians from those that are not quadrature-integrable. 

Then they suggest that we try instead to experiment with particular sets 
of functions in order to check which ones might give rise to integrable 
Hamiltonian problems. 

Here comes the main surprise: the obvious technique to develop inte- 
grable Hamiltonian systems would be to find a denumerable family of 
functions and test them for suitability as first integrals in Hamiltonian sys- 
tems. We show that such a procedure also leads in the general case to an 
algorithmic impossibility. 

To summarize: 

1. Given a Hamiltonian h, do we have an algorithm that tells us whether 
the associated Hamilton dynamical system Xh can be integrated by 
quadratures? 

2. Given a Hamiltonian h such that Xh can be integrated by quadrat- 
ures, can we algorithmically find a canonical transformation that 
will do the trick? 
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3. Can we algorithmically check whether an arbitrary set of  functions 
is a set of  first integrals for a Hamiltonian system? 

The answer to those questions is, no. 
The mathematical setting for our results can be found in Arnold (1976) 

and da Costa and Doria (1990a). It goes as follows: let P be a phase space, 
that is, a 2n-dimensional smooth real manifold endowed with a nondegener- 
ate symplectic form 7/. A vectorfield X on P is (locally) Hamiltonian if Lx71 = 
0, where Lx is the Lie derivative with respect to X. A function f :  U c  P ~  I:1 
is a first integral of  X if L x f  = O. As Lx~ = 0 is locally equivalent (over a 
Poincar6 star-shaped domain) to ix~l = -dh,  where ix is the left interior pro- 
duct with respect to X, d is the exterior derivative and h is the (local) 
Hamiltonian, we can show that (locally at least) L x f =  0 if  and only if 
{f, h} = 0, where {-,-} denotes the Poisson bracket operation. 

We also obtain the algebra d ( U )  of elementary functions over an open 
star-shaped domain U c  P, as well any of  its extensions N ( U ) ~  d ( U )  as in 
Remark 3.29. 

We will first consider the last question in the preceding list: Can we 
algorithmieally check whether an arbitrary set of  functions defined on phase 
space is a set of  first integrals for a Hamiltonian system? 

We say that a set F = ( J ~  . . . . .  fk) ,  k<_n, of  smooth functions on an 
open domain U in a phase space P of  dimension 2n is an independent set if 
and only if {J~,fs} =0,  for all i , j<k .  Then: 

Proposition 4.3. Let us be given an arbitrary set of functions 

�9 = <jq . . . . .  fn> 

defined on a domain Uin phase space P. Then there is no general algorithmic 
procedure that allows us to determine whether q~ is an independent set on U. 

Proof. We must show that the Poisson brackets {f,,J)} = 0. Let B(k, Pl) 
be the function B in Proposition 3.22 with the obvious change of  variables, 
and kso)o. Put 

Now write 

f l  (k, q~ , P l )  = B(k, p~)q~ 

f2=h=cpl  

for ce  Iq, a nonzero constant. Then, 

{A, h} = O ~ B ( k , p , ) = 0  

Now, as there is no decision procedure to check whether given an arbitrary 
k~o~o, Vx~R B(k, x)=O or B(k, x)#O,  the independence of  the set that 
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includes the functions fl  (k, q, p) as above cannot be algorithmically decided. 
Notice that h can be seen as the Hamiltonian for a particle whose 

trajectory in configuration space (restricted to U) is given by 

(ct, qo2, �9 �9 �9 qon) 

all q0i kept constant. �9 

Corollary 4.4. There is no algorithm to check, for an arbitrary Hamil- 
tonian h and for a smooth functionfdefined on P, whetherf is  a first integral 
of h. 

Proof Consequence of the preceding result. �9 

We thus settle question 3. We can now turn to the restricted version of 
the integrability problem: Given a Hamiltonian whose associated dynamical 
system has been proved to be integrable by quadratures, can we algorithmically 
find a canonical transformation that will allow us to explicitly integrate it? 

Proposition 4.5. For an arbitrary Hamiltonian h such that Xh can be 
integrated by quadratures, there is no algorithm to solve the associated 
Hamilton-Jacobi equation. 

Proof We have two proofs; the first one goes as follows: we can use 
the "yes or no" function 0, described in Corollary 3.18. We define the 
countable family of Hamiltonians 

hk(q, p) = �89 + qZ) O(k, q) + p( l - O(k, q) ) 

For each ke  COo, hk will either describe a free particle or a harmonic oscillator. 
Therefore, given any k, hk is always integrable by quadratures. 
Suppose then that there is an algorithm for solving the associated 

Hamilton-Jacobi equations. We could therefore decide whether each hk 
represents a harmonic oscillator or a free particle, and consequently we 
would decide the value of O(k, q), which is impossible. 

Therefore, given the family h~, there is no algorithm to compute the 
solution for the associated Hamilton-Jacobi equation, and as a consequence 
the general problem (for an arbitrary set of quadrature-integrable Hamilton- 
ians) cannot be algorithmically solved, since if it were, we would decide the 
set h~ in the above sense, which is impossible. 

The second proof is a variation of the preceding one that, however, 
does not use O(m) (da Costa and Doria, 1990b). Let h=pl and 
h'=p~+q~. Then put 

hm=h+ C(m, pl)h' 
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where C(m, x) is given in Corollary 3.18, is again a family of integrable 
Hamiltonians that either represent a single free particle or a free particle 
uncoupled to a harmonic oscillator. Notice that in the present situation we 
are dealing with a much more restricted algebra of functions than our -~ in 
Corollary 3.18. 

We have thus settled question 2. [] 

Remark 4.6. Notice that the family hk gives an example of a pheno- 
menon that has been recently pointed out by Moore (1990) in the context 
of chaotic dynamics: even if we can computably determine with absolute 
precision a point in the orbit of any of the systems described by h~, we have 
no general algorithmic procedure to determine its trajectory. However, in 
the present case we are dealing with a family of systems that are nonchaotic 
and integrable; Turing universality (as in Moore's example) can be realized 
if our 0 is concocted out of the universal Diophantine equation (da Costa 
and Doria, 1990b; Davis et aL, 1976). Therefore, formal predictability also 
fails in the "nice" case of integrable systems. 

But could we not somehow look at the actual physical system described 
by a n  hm and immediately decide whether one has a harmonic oscillator or 
not? We have proposed elsewhere (da Costa and Doria, 1990b) a thought- 
experiment [which depends on a remark by Scarpellini (1963)] that would 
allow us to decide the Halting Problem out of a family of systems like the 
hm ; it remains to be realized at the concrete level. 

We can now turn to the first question: Given an arbitrary Hamiltonian 
h, is there an algorithm that allows us to decide whether the associated Hamil- 
tonian system Xh is integrable by quadratures? 

The answer is, no. We can offer two different proofs for this negative 
result. The first proof goes as follows: again let ~ ( U )  be an adequate exten- 
sion of the algebra of (real-valued) elementary functions on a symplectic 
manifold P, where U c  P is a star-shaped open Poincar6 domain in P. Then: 

Proposition 4. 7. The set ~ ( U )  c ~ ( U )  of all elementary Hamiltonian 
functions on U with a first integral expressed by a quadrature is not recursive. 

Remark 4.8. The restriction on the dimension is to allow for the exist- 
ence of nonintegrable systems (Holmes and Marsden, 1982). 

Proof If  h is a Hamiltonian on U, f is one of its first integrals if and 
only if {h, f}  = 0. Therefore, it is easy to show that the set of all such couples 
is recursively enumerable. We. proceed as follows: 

1. We restrict our attention to elements of ~ with coefficients in the 
rationals O. Therefore, ~ ( U )  is a countable set and can be effectively 
enumerated. 
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X 

2. The set ~ - ( U ) = ~ ( U )  u {Sqf(~) d~: q~O,fe~(U)}, where ( 
denotes an adequate set of variables on U, can also be effectively 
enumerated. 

3. All the operations required for the calculation of the expression for 
the Poisson bracket {h,f} can be effectively described for the formal 
expressions that represent the elements of both ~ and ~ .  

4. We get expressions of the form B(q, p) at the end of the computation 
of the bracket, which again must be algorithmically checked to see 
whether one has B = 0, for all p, q, or not. 

5. We then generate a recursively enumerable set of pairs {h,f} = 0 by 
calculating {h,f}m one step (the indices refer to the enumeration of 
the pairs (h, g) ) ; . . .  the first, second , . . . ,  ith pairs 

{ h , f } l , . . . ,  {h,f}, 

i times, and add to the set we are thus generating all those that stop 
before or at that ith step. 

Thus, the set of all Hamiltonians on U so that the associated Hamilton- 
ian flows can be integrated by quadratures is recursively enumerable. How- 
ever, it is not recursive, as there is no enumeration procedure for its 
complement, due to the negative solution of question 3. [] 

The second proof is similar to the one that settled question 2: we state: 

Proposition 4.9. There is a family h~, k E ~ ,  of Hamiltonians in U so 
that there is no general decision procedure to check, for an arbitrary k, 
whether Xhk can be integrated by quadratures. 

Proof Let h be integrable by quadratures and let h' not be integrable 
by quadratures (say, the Holmes-Marsden example, or--if we allow for a 
higher-dimensional phase space, a 3-body-like problem). We form the linear 
combination hk = Okh + (1 - O~)h'. Then there is no general decision procedure 
to check whether, given an arbitrary k, one deals with a "nice" or "nasty" 
Hamiltonian. 

A variant of this proof could follow the idea in the second proof for 
our result on question 2. [] 

Corollary 4.10. There is no general algorithm to decide whether an 
arbitrary Hamiltonian system over U can be solved by quadratures. 

Proof From the preceding result. [] 

Question 1 is thus dealt with. 

Remark 4.11. We also cast a shadow on a quite commonplace assump- 
tion made when one studies physical (or any other "concrete" systems) from 
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a formal point of view. When formally depicting a scientific structure, say, 
a physical theory, one usually deals with an object of  the form �9 = (M,  A, p) ,  
where M is a formalization of  the theory, A is a "domain of  applicability," 
and p is a set of correspondence rules. Everything is supposed to be 
embedded into some set theory, so that we can operate over ~.  Well, we have 
just proved that p cannot be algorithmically defined for physically interesting 
theories, such as classical mechanics or any other theory where we can repeat 
the above construction (say, quantum mechanics, or general relativity, or 
electromagnetism), as we cannot decide whether, say, h(q, p) represents a 
free particle or a harmonic oscillator, as we showed above. 

4.3. Undeeidability of Chaos 

Let X be a smooth vectorfield on a differentiable manifold M. Can we 
algorithmically check whether X has a chaotic behavior-- in any of the usual 
meanings for that word, that is, given an arbitrary vectorfield X, can we 
algorithmically decide whether X is chaotic? 

This problem was explicitly discussed by Hirsch (1985) when he makes 
some remarks about the Lorenz system of  equations (Lorenz, 1963): 

By computer simulation Lorenz found that trajectories seem to wander back and 
forth between two particular stationary states, in a random, unpredictable way. 
Trajectories which start out very close together eventually diverge, with no 
relationship between long run behaviors. 
But this type of chaotic behavior has not been proved. As far as I am aware, 
practically nothing has been proved about this particular system. . .  
A major challenge to mathematicians is to determine which dynamical systems are 
chaotic and which are not. Ideally one shouM be able to tell from the form of the 
differential equations. 

(Emphasis added.) Therefore we can ask: Is there a general algorithmic 
criterion so that, given a definition for chaos in a dynamical system, we can 
determine whether an arbitrary system satisfies that definition? 

Again the answer is, no. Let M be a differentiable manifold, and let 
U c  M be a star-shaped open domain. As always, we suppose that ZFC is 
arithmetically consistent, and that our results happen within ZFC. 

We assert: 

Proposition 4.12. There is no general algorithmic procedure to check: 

I. Whether an arbitrary vectorfield X over U is ergodic. 
2. I f  dim M >  4, whether an arbitrary vectorfield X over U has a Smale 

horseshoe. 
3. If  M is compact, real, two-dimensional, of  class C 3, and has a con- 

stant negative curvature, whether an arbitrary X is a Bernouillian 
flow. 
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Proof As above. For  the first two assertions, let K0 be a constant 
vectorfield on U, and let Y be ergodic, or have a Smale horseshoe [for an 
explicit example, see Holmes and Marsden (1982)]. Now let 0 be the "yes-  
no"  function in Corollary 3.18. Then 

Zm = ~)mKo + (1 -- Om) Y 

where 

~ ) m ( X l ,  . . . , X n )  : O m ( X l )  

has the same smoothness properties of Y, as both K0 and 0 are constant 
functions. It is an undecidable countable family of  vectorfields, as in the 
preceding results. 

For  the third assertion, we know that (Ornstein and Weiss, 1973) geo- 
desic flows on such an M are Bernouillian. Then, if X is one such flow, we 
write 

Z m = O(m)X 

Again we cannot in general decide whether we have a trivial zero field or a 
Bernouillian flow. �9 

5. GODEL'S  T H E O R E M  IN CLASSICAL MECHANICS 

Several of the preceding undecidability results can be reformulated as 
incompleteness theorems within an adequate formalization of classical mech- 
anics and of dynamical systems theory; Zermelo-Fraenkel theory is one 
such adequate setting for it. We state and prove two incompleteness theorems 
that stem from what we have done in Section 4. 

5.1. A Hamiltonian Version of GSdel's Theorem 

Notice that all our models M for the ZFC axioms include the standard 
model N for elementary arithmetic as its model for ZFC-arithmetic. 

Proposition 5.1. If  ZFC is arithmetically consistent, then there is a 
Hamiltonian system of  which it is true in M that it cannot be integrated 
by quadratures, but such that this fact cannot be proved within the given 
axiomatization for Hamiltonian mechanics. 

Remark 5.2. We must add to our statement the caveat in Davis (1973, 
Theorem 7.7). Actually, we only require here an arithmetically consistent 
axiomatization that is strong enough to contain symplectic geometry and 
the theory of  Diophantine equations, plus all the apparatus of Richardson's 
functor. 
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Proof. A formal proof can be directly obtained out of Proposition 3.28. 
However, we can offer here an informal argument that still has the flavor of 
the original argument in Post (1944). 

We imitate Davis (1973). We generate all the theorems in the given 
axiomatization. Within such a listing we form two sublists: list A contains 
the Hamiltonians whose associated vectorfields can be provably integrated 
by quadratures. List A is recursively enumerable, we know. List B contains 
those that we have proved that cannot be integrated by quadratures. Now 
list B cannot contain all Hamiltonian systems that cannot be thus integrated. 
For if it did, the set of all those Hamiltonians which cannot be "nicely" 
integrated would be recursively enumerable, and there would be a decision 
procedure for integrability. Thus, there is a Hamiltonian in our theory that 
cannot be integrated by quadratures, but that fact cannot be proved within 
the given axiomatization. [] 

Proposition 5.1 shows that the difficulty in finding nice integrals for 
Hamiltonian systems is of the same nature as the incompleteness in G6del's 
Theorem. There are things that one simply cannot prove, even if we may 
suspect that we are dealing with a true fact. 

5.2. Chaos Beyond the Reach of Mathematical Proof 

Our results on chaos can also be formulated as incompleteness results: 

Proposition 5.3. If  ZFC is arithmetically consistent, then: 

1. There is a motion rn(t) on R 2 of which it is true in M that re(t) is 
ergodic in R 2, but such that its ergodicity cannot be proved from the 
axioms of the theory. 

2. There is a dynamical system of which it is true in M that it has a 
Smale horseshoe, but such that the existence of the horseshoe cannot 
be proved from the axioms of ZFC. 

3. There is a flow of which it is true in M that it is a Bernouillian flow, 
but such that this fact cannot also be proved from the ZFC axioms 
to be so. 

4. If  V is a ZFC predicate that gives a characterization for chaos in a 
dynamical system, so that ZFC ~- 3x~,(x) and also ZFC ~- 3x -7 ~(x), 
then there is a dynamical system Z such that M~ ~ Z ) ,  but 
ZFC ~ ~(Z)  and ZFC [~-1 ~ Z ) .  

Proof. Goes on as above; follows directly from Proposition 3.28. 
We can also offer an intuitive proof for the first assertion, if we slightly 

change the argument in Proposition 4.1. We enumerate all open squares 
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with rational centers and rational sides parallel to the coordinate axes in the 
plane 1:12. 

We then make two enumerations, one of the squares with rational 
centers and sides as described above, which list we denote S, and another of 
all motions Tcd([:12). We consider all pairs (s, t)i, iecoo, seS  and teT, 
and algorithmically start checking whether t c~ s ~ ~ or not. 

We then start to enumerate all theorems in our theory. We make two 
listings out of the theorem's list: one, list NE, will include all pairs (s, t)  so 
that t does not provably go through s. The second one, list E, will include 
all motions t e T that are provably ergodic. 

Now there must be an ergodic motion t that will not appear in list E. 
For otherwise we would have a decision procedure for the question "does t 
goes through s?" and that is impossible. �9 

6. CONCLUSIONS 

We may now summarize the main features of our undecidability results: 
1. We have encoded Diophantine problems into classical mechanics, so 

that the solutions of some algorithmicity questions in mechanics are seen to 
be Diophantine problems under a disguise. 

2. With the help of the Matijagevi~-Davis-Robinson universal 
Diophantine equation (Davis et al., 1976) plus Richardson's explicit con- 
struction of an elementary function out of a prescribed Diophantine 
equation (Richardson, 1968), we can explicitly obtain a function like 
G(m, x) in Corollary 3.27. 

We can go further, and obtain a function K(m, x) that mirrors the 
properties of Chaitin's ~-number (Chaitin, 1988), so that one sees that at 
worst the undecidability questions we are dealing with behave in an erratic, 
random way. 

3. Moreover, as a consequence of the third assertion in Proposition 
3.28, we can be sure that, even if there are proofs for, say, the integrability 
of particular Hamiltonian systems, or the existence of chaos in certain 
families of dynamical systems, such proofs can be arbitrarily long, which 
means that they can be very difficult. 

Especially when one deals with chaos theory, and with the tremendous 
effort that has been made to ascertain the properties of innocent-looking 
systems such as the Lorenz system (Hirsch, 1985; Lorenz, 1963), to almost 
no avail, one wonders if one of those intractability-turned-into-hopelessness 
effects is at work in such cases. 

4. However, there is a bright side in those questions, as new "solvable" 
Hamiltonian problems can be explicitly constructed out of tractable (algo- 
rithmically solvable) families of Diophantine equations. 
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We get an actual recipe to do so; it remains to see if that recipe leads 
to physically sensible Hamiltonian systems. 

As Proposition 3.28 shows, undecidability and incompleteness are to be 
found everywhere in mathematical physics, since the usual function spaces 
we deal with when modeling physical phenomena all include the algebra of 
elementary functions. 

We must also emphasize related points (P. Suppes, private comments) : 
1. While we have given general existential proofs concerning undecid- 

ability and incompleteness in physics, we have not considered up to now the 
same questions with respect to particular physically interesting systems. That 
is to say: if we consider, for instance, the Lorenz system, how much can we 
know about it? This is certainly a much harder problem. If  we follow the 
approach of the present paper, in order to deal with specific situations one 
would have to develop a functor like Richardson's from Diophantine equa- 
tions into the particular theory we are interested in, and then prove it to 
be undecidable and incomplete out of the similar results for Diophantine 
equations. Or one would have to prove that such a functor cannot be 
constructed. 

Anyway, dealing with specific situations is assuredly much more difficult 
than to prove general facts. Yet we believe that the results we have obtained 
can be also understood as some sort of warning sign: even if it looks obvious 
that a system has a given property, it does not immediately follow that we 
can prove it to have that property within a first-order language--we may 
never be able to. 

2. We can also turn the tables around and ask about the physical 
feasibility of deciding undecidable sentences in a formal theory out of an 
experiment. That can certainly be done at the Gedanken-experiment level 
(da Costa and Doria, 1990b; Scarpellini, 1963), despite the fact that its 
implementation through the simulation of a continuous process may cer- 
tainly be tricky from the practical viewpoint. 

What can we make out of all this? We cautiously suggest that the 
trouble may lie not in some essential inner weakness or flaw of  mathematical 
reasoning, but in a too narrow, too limited concept of formal system and of 
mathematical proof. There is a strongly mechanical, machinery-like arche- 
type behind our current formalizations for the idea of algorithmicity that 
seems to stem from an outdated 17th century vision h la Descartes (even if 
our current notion of proof  is traced back to Green mathematics). Also, a 
first-order language such as the one for Zermelo-Fraenkel theory is too 
weak: even if we can prove all of  classical mathematics within it, it is marred 
by the plethora of undecidability and incompleteness results that we can 
prove about it, and which affect interesting questions that are also relevant 
for mathematically-based theories such as physics. 
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The authors certainly do not know how to, let us say, safely go beyond 
the limits of the presently available concepts of computability, algorithmic- 
ity, and formal system, but they feel that if there are so many quite common- 
place things that "should" somehow be provable or decidable within a 
sensible mathematical structure, and which, however, turn out to be algo- 
rithmically undecidable or unprovable, then one cannot blame the whole of 
mathematics for that. Mathematics is not at fault here. The problem lies in 
our current ideas about formalized mathematics. They are too weak. 

We must look beyond them. 
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